No one is perfect, but some are more accomplished than others

In quite a few of my articles on this blog I have described how well MPEG has managed to create generic standards for the media industry, how many new standards keep on being produced to support the expansion of the media business and how much the expansion has brought benefits to that industry.

The first part of the title, however, reminds us that MPEG is an organisation created by humans and populated by humans. As MPEG is not and cannot be perfect, it is appropriate to ask what is the MPEG level of performance.

Being able to constantly answer the performance question is important for MPEG because there must be a system in place that can be used to constantly monitor the performance of the group. Even if performance is excellent today, there is no reason to rest because MPEG may very well not be excellent tomorrow.

The problem in trying to answer the question of MPEG performance is that MPEG is not a company, but a standards committee. What are the Key Performance Indicators (KPI) of a standards committee like MPEG? For sure MPEG is “successful” (it does provide useful standards), but is it successful enough compared to the possibilities that its mission offers?

In this article I will try and answer the question of MPEG adequacy to its mission by applying the SWOT (Strengths-Weaknesses-Opportunity-Threats) methodology to a set of parameters: Context, Scope of standards and Business model.

Obviously, these are not the only parameters that are relevant to an answer to MPEG adequacy to its mission.

SWOT is an excellent methodology because it separates internal (strengths and weaknesses) from external issues (opportunities and threats), even though it is not always easy to allocate an issue to internal and external.

The SWOT analysis reported here uses in part the results of the SWOT analysis carried out by the Italian National Body UNI in their proposal to make MPEG a subcommittee.

In the future other parameters will be considered: Membership, Structure, Leadership, Client industries, Collaboration, Standards development, Standards adoption, Innovation capability, Communication and Brand.

This is quite an engaging plan of work. So, expect to see more episodes on this blog.


By “context” I mean the framework in which MPEG operates, namely ISO and IEC, but also in part ITU, because MPEG and ITU collaborate in JCT-VC and JVET.


ISO, IEC and ITU are the topmost international standards developing organisations (SDO). Their standards have a high reputation because they are produced in environments governed by rigid rules (the ISO/IEC directives). Published standards are of a high editorial quality because they result from a rigorous process.

The very fact that such an atypical organisation like MPEG could take root, create a network of contacts, develop standards, influence large swathes of industries and thrive shows the strength of the context in which MPEG operates.

Since they are labelled ISO, MPEG standards can become part of a conformance assessment program or even be referenced by legislation.


Being international organisations, ISO, IEC and ITU are hierarchical and bureaucratic in different measures and in different domains. As I explained in MPEG and ISO, ISO covers all areas of international standardisation, with the exception of  electrotechnical (IEC) and telecommunication (IEC) matters. The same rules apply to all parts of ISO and this has a high price tag. They are, almost by definition, slow to adapt to fast changing industry environments. Publication of standards takes time, often a year or more since the final draft international standard is released by the originating committee.

MPEG is quite different than most ISO/JTC 1 entities because it almost does not develop standards that address terminology, policies, architectures, frameworks etc. Indeed, most MPEG standards are deeply technical, bit-level specifications. They are actually closer to an internal company specification than a regular architecture or framework standard.

Some of the ISO/IEC rules have serious impacts on MPEG’s ability to develop timely and bug-free standards.

MPEG is a working group (WG), the lowest level of the ISO structure. To design, develop and “market” its standards, MPEG needs to establish liaisons with many other bodies. However, the process that establishes liaisons is slow because of many hierarchical layers.

Establishing liaisons with a non-ISO/IEC/ITU entity is cumbersome because the target group must apply for “recognition” by ISO, a step that not many bodies, particularly those with a high status, are ready to undertake.


Being part of a huge organisation, MPEG may establish liaisons with any committee in that organisation. JTC 1 has a standing agreement with ITU-T whereby a common standard can be easily developed jointly by JTC 1 and ITU-T groups by making reference to that agreement.

Since MPEG standards cut across a large number of application domains, many of which are under the purview of the 3 international SDOs, MPEG can be the vehicle that helps foster communication among the 3 bodies.


MPEG is a large WG having reached an attendance of 600 participants at the last (July 2019) meeting. There is a risk that ISO blindly applies its directive calling for WGs to have a “restricted” number of members and to be of “limited” size. Should this happen the MPEG standards that industry needs would no longer be produced or will be produced with less quality. Nothing will replace the swift infrastructure that enables technology integration. A suitable new structure would take years to emerge while there is no time to quibble because competition from other standards based on different business models is eating up at industries that used to be MPEG client industries.

A decision to break up MPEG could have extremely serious consequences on an industry that has been accustomed for decades to interact with and to receive standards from MPEG. The consequences will extend to thousands of highly skilled researchers, millions of workers and billions of consumers.

Scope of standards

A simplified version of the MPEG scope of work is

  1. Efficient coding and compression of digital representations of light and sound fields
  2. Efficient coding and compression of other digital data
  3. Support to digital information coding and compression

#1 refers to the traditional audio, video and 3D graphics compression, including immersive media, #2 concerns other data, e.g. compression of DNA samples or neural networks and #3 concerns ancillary, but no less important, topics such as file and transport formats.


A major strength of the MPEG scope is the fact that it extends through the entire chain enabled by compression and decompression technologies. The breadth of scope has allowed MPEG to develop suites of standards that can be individually used, but also used in an integrated package.

Figure 1 – Integrated MPEG standard suites

Its broad scope has thus enabled MPEG to create a digital media ecosystem composed of technology providers feeding their technologies into the MPEG technology repository via Calls for Proposals, that products manufacturers can integrate to service the MPEG client industries.

Figure 2 – The MPEG industries: Technology, Implementation and Client

MPEG’s ability to cover all the space defined by the scope has been a major element that has determined the success of MPEG standards. This was in place since the early MPEG days of MPEG-1, when the need to provide a complete specification prompted MPEG to also work on Audio and Systems issues, and of MPEG-2, when video distribution on analogue channels prompted MPEG to develop the famous Emmy Award recipient and long-lived MPEG-2 Transport Stream, and CATV applications prompted MPEG to develop the DSM-CC protocols.

Another strength is the fact that MPEG standards result from collaborative developments and are maintained by the MPEG “community”.


Thirty-one years ago, when MPEG held its first meeting, companies were already applying digital technologies, but in an uncoordinated manner. However, when MPEG digital audio and video compression standards became available, they sold like hot cakes because market demanded the savings made possible by standard digital technologies and the new opportunities offered by MPEG standards. Today markets keep on demanding old forms of savings, but also new services enabled by new media technologies. The more complex technology scenario makes it increasingly difficult to understand which standards based on which technology are needed by industry.

Because MPEG is mostly a technical group, it is also difficult to have the appropriate number of market experts with the appropriate knowledge to develop the requirements for new projects.


The MPEG scope offers a very large number of opportunities for standardisation in the audio-visual domain, in the traditional space, in the new “immersive media space” and in the new non-media data compression space. Since digitisation is becoming more and more a buzzword, more industries are discovering the benefits of handling their processes with digital technologies. The large amounts of digital data so generated can benefit from compression, as I wrote in Compression – the technology for the digital age. Compression can be used to optimise and enhance their processes and provide, much as it happened for the media industries, unrelenting expansion to their businesses. This could happen any time soon in two other domains that MPEG has already tackled: genomic information (see Genome is digital, and can be compressed) and neural networks (see Moving intelligence around). In The MPEG frontier I have elaborated on some of the opportunities.


Data compression is important, and MPEG does offer plenty of solutions to achieve that in different instances. Data compression is a crucial enabling technology, but customers need more than that. This has been a recurring theme in all MPEG standards from the time (1990) MPEG realised that software could be used not just to run video and audio compression algorithms, but also as a way to specify the standard.

Industry has evolved a great deal since then. In some environments that MPEG could claim are part of its purview, the standard is just the software. Some organisations, alliances or even companies offer high-quality software without a textual specification. This means that, even if the software may be open source, the actual specification is practically “hidden”, and the reference software may easily become the only implementation, because it is “the specification”.

MPEG prides itself of its ability to produce bare-boned standards that specify the minimum, but is threatened by other entities who can provide packages whose completeness is not matched by MPEG specifications.

A related threat comes from the confusion generated by the fact that other standards organisation may produce standards on, say AR/VR, that appear to compete with MPEG compression standards. while they are at completely different levels.

A major threat is the possible change of mind on the part of ISO regarding the size of MPEG. A decision to split MPEG in its component elements would be a disaster because, as mentioned above, MPEG acts as an ecosystem of groups competent on a wide range of interacting technologies assembled to produce integrated and coherent standards. Note that MPEG experts do not feel uncomfortable with the size of the group because the wide scope gives them the opportunity to be exposed to more views, issues and opportunities.

Business model

MPEG is not a for-profit entity. However, it operates on the basis of an implicit “business model” that has powered its 30 year-long continuous expansion. In plain words

  1. MPEG develops high-performance standards using the best technologies available, as offered in response to Calls for Proposals (CfP);
  2. Patents holders receive royalties through mechanisms that do not involve MPEG and usually re-invest those royalties in new technologies;
  3. MPEG develops new generations of MPEG standards using those new technologies.


The very existence of MPEG with a growing membership is a proof that the MPEG business model is valid because excellent MPEG standards remunerate good IP and royalties earned from existing standards fund more good IP for future standards.


All good games must come to an end. The end in MPEG has not come yet, but difficulty in obtaining licensing for some MPEG standards (see, e.g. A crisis, the causes and a solution) show that the MPEG business model is no longer as strong and immediately applicable as it used to be.

There is resistance to changes even of a limited scope to the MPEG business model. Therefore, the MPEG business model is weakening because it has not been allowed to adapt.


I have tried to highlight some solutions in Can MPEG overcome its Video “crisis”?, IP counting or revenue counting? and Matching technology supply with demand make some proposals that provide an opportunity to enhance the MPEG business model without reneging its foundations.


The threats are concrete and serious. MPEG may become irrelevant if it stays exclusively with an outdated business model. But MPEG is not a company, it is an organisation that operates based on rules established by the appropriate authorities within ISO and where decisions are made by consensus.


This is just the beginning of the SWOT analysis. Very soon I will publish an article on Membership, Structure and Leadership.

Posts in this thread


Einige Gespenster gehen um in der Welt – die Gespenster der Zauberlehrlinge


The title of this article is inspired by two masterpieces of German philosophy and literature. The first is Karl Marx’s “The Manifesto of the Communist Party” with the metaphor of the spectre (of communism) going around in Europe while the powers of conservation try to stop it. The second is Johann Wolfgang von Goethe’s “The Sorcerer’s Apprentice”, the story of an apprentice who thinks he can enchant a broom and get it to do some work for him, because he has seen his master doing it. The broom gets out of hand, the master comes back, the apprentice implores the master to help and the master sorts out the apprentice’s mess.

I agree that all the above is still rather cryptic and it is not at all clear what these two German works “combined” have to do with the topics that I usually deal with in this blog.

So let me explain: the broom is MPEG, the sorcerers are the people who run MPEG and the spectres are the multinational apprentices who think they can handle the MPEG broom because they have seen it done by those who know how to do it.

The apprentices are labelled spectres because the word indicates “something widely feared as a possible unpleasant or dangerous occurrence”.

Let’s talk about the MPEG broom

As I wrote in Who “owns” MPEG?, the word MPEG is used to indicate several related but often independent things. In one instance, MPEG stands for the “MPEG community”, i.e. the ensemble of people and entities who are affected by what the “MPEG group” does: end users, industries, companies who do business using MPEG standards, universities and research centres, and individuals with an MPEG technical background. Each element in the list is a microcosm, but here we are particularly interested in the last microcosm – individuals with an MPEG technical background. This is composed of active MPEG experts, non-attending registered MPEG experts, researchers working in companies on MPEG standards without being registered members, researchers at large who are doing research in areas that are, or are expected to become, MPEG standardisation areas, and consultants in MPEG matters.

All these people are MPEG stakeholders (the others, too, but here we concentrate on this particular microcosm). They rely on MPEG because MPEG is serving them. MPEG owes part of its existence because they exist and operate. To a significant extent, these MPEG stakeholders can operate because MPEG exists.

The “MPEG group” is another microcosm where ideas percolate through different channels. As explained in Looking inside an MPEG meeting and How does MPEG actually work?, to become standardisation projects, ideas are processed in different ways. Requirements are developed, communicated to different environments and agreements “stipulated” with different industry stakeholders based on those requirements. Standardisation projects require technologies whose existence and performance levels must be verified. Technologies come into MPEG through different channels and are processed in different ways by different groups. Standards are verified against the stipulated performance. Finally, standards are living beings: they evolve and need maintenance.

MPEG is not a broom that operates with a magic, at least not in Goethe’s sense. You do not require spirits (“Geister”) to use it. Still, it is a sophisticated broom that has taken the shape it has as a result of a Darwinian process that has involved and is involving incremental adaptations to match the MPEG group to the needs of the expanding industry coverage, the continuous shift of the way industry operates and the accelerating technology cycles.

The shape that MPEG has gotten today is not final. If it were so, that would mean that MPEG is dead. MPEG is evolving and keeping it adapted to changing conditions is a serious matter. It cannot be left in the hands of some sorcerers’ apprentices.


Next to MPEG there is a group called JPEG. Everybody knows the word JPEG because of the .jpg extension of image files. The JPEG standard (ISO/IEC 10918-1, first released in 1992) has had a far-reaching impact on consumers because all handsets and computers can handle .jpg files and many important services have those files at the core of their business. But let’s make a comparison between MPEG and JPEG.

Parameters JPEG MPEG
Constituencies Image Broadcasting & AV streaming
Capability to evolve Still working on images Expanded field
Number of projects A few in parallel Several tens in parallel
Business models “Royalty free” “IP-encumbered”
Competition of standards No Very lively
Approaches                Holistic, top down Bottom up
Industry/ academia mix 1:1 3:1
Work force 60 members 600 members (+1000s outside)
Organisation Simple Sophisticated
Standards impact Huge (2 standards) Huge (many standards)
Future-oriented standards Light field image Point cloud & immersive video

We see that the two groups are different in many key respects: the industries they serve (image vs broadcasting and streaming), the capability to make the best out of the field to serve industry needs, the number of projects (limited vs several tens), the type of standards they provide (royalty free vs encumbered), the competition (little vs a lot of competition), the approach used to develop standards (principle-based vs experience-based), the percentage of academia in the membership (50% vs 25%), the organisation (handling a few vs handling tens of parallel projects), the impact (2 standards vs many), future oriented standards (coding of light field images vs coding of point clouds & immersive video).

Simply, it is a law of nature. If the size scales by an order of magnitude, everything ends up being different.

Enter the sorcerers’ apprentices

Now, the apprentices think that, because a part of MPEG is handling some technologies that JPEG, too, is handling, we should interpenetrate JPEG (60 people working on images as 30 years ago) and MPEG (600 people working on video, audio, systems and other data, who have designed the strategy that has made the media industry digital and fomented its continuous development) and create news groups creatively organised to manage the huge MPEG work program, the vast array of technologies, the network of liaisons and the large swathes of client industries. A similar fate may also be suffered by JPEG who is at risk to dissolve in the flood caused by the apprentices, as in Goethe’s ballade.

A disclaimer is needed at this point: this sort of idea has nothing to do with the proposal to elevate the MPEG Working Group (WG) to Subcommittee (SC) status presented in Which future for MPEG. The elevation to SC status seeks to change the WG envelope to an SC envelope, keeping the inside – the work and its organisation – exactly the same. The other seeks to upset a working machine thinking that the changes will work, much like Goethe’s sorcerer’s apprentice thought he could handle the magic broom.

A couple of expressions come to mind. The first is “elephant in a china shop”. The effects of the apprentices’ proposal will be exactly this: you will need to merge proud and accomplished people serving different constituencies; operating in environments of largely different complexity in terms of projects, number of people and industry; with different business models and approaches; operating in differently competitive environments; with different 30 years of history and experiences… After the elephant has entered the shop, forget finding any piece of chinaware intact.

The second expression is “A camel is a horse designed by a committee”. Unfortunately, this is not a joke but the harsh reality of some environments where people with a lot of self-importance operate in areas where they have little or no competence or experience. MPEG is mostly free from such people. Indeed, the sorcerers’ apprentices’ proposal comes mostly from people who left MPEG long time ago.

Some effects of the apprentices’ proposal

I could write a long list of negative effects, but let’s limit it to four.

  1. The MPEG brand. The proposed interpenetration will kill the MPEG brand affecting thousands of companies and researchers. Today researchers use their “I belong to MPEG” as a status symbol supporting their research. Tomorrow they will lose both their status and funding. The same applies to the JPEG brand.
  2. The MPEG credibility. The proposed interpenetration will mix two groups who share only a little part of one thing: technology. Technology is important, however, designing the structure of an industrial standards group like MPEG on the basis of technology, instead of constituencies’ needs, wipes off the credibility built by thousands of MPEG experts in 30 years of well-considered efforts.
  3. The MPEG standards. The proposed interpenetration will alter the process by which MPEG standards are defined and developed. Industry will shy away from this new generation of self-styled “MPEG standards” because they will not fit their needs and will look elsewhere. The only sensible thing MPEG will be left with is the maintenance of the 180 standards that were produced by the real MPEG.
  4. The MPEG productivity. The proposed interpenetration will dramatically affect the number and quality of standards produced. One value of MPEG standards is the breadth and depth of their scope. More important, however, is the fact that MPEG standards are not independent specifications but are designed to work together thanks to the painstaking efforts of hundreds of MPEG experts from different areas.

The sorcerers have their hands tied

Decades after decade generations of MPEG sorcerers have learnt the magic, but they are not free. If the MPEG broom is wrongly used, there will be no sorcerers coming back to help the apprentices to undo their misdeeds. The apprentices may well moan die ich rief, die Geister, werd’ ich nun nicht los (I cannot get rid of the spirits I called), but no one will be capable to stop the MPEG broom gone crazy.

Those who care about MPEG have better make themselves heard. At stake there are trillions of USD year on year, billions of users, millions of workers and thousands of highly skilled researchers.

Posts in this thread


Does success breed success?


Most readers will answer yes to the question asked in the title. Indeed, very often we see that success of a human organisation breeds success. Until, I mean, the machine that looked like it could produce results forever “seizes”. But don’t look elsewhere for the causes of failure: it’s not the machine, the causes are humans inside and/or outside.

In an age when things move fast and change, MPEG has been in operation for three decades. Its standards have achieved and continue achieving enormous success serving billions of human beings: consumers, service providers and manufacturers.

This article makes some considerations on the best way for MPEG success to breed success – unless success to breed failure is the goal. Apparently unrelated considerations are made in The Imperial Diet is facing a problem.

Recalling the MPEG story

MPEG started in 1988 as an “experts group” with the task to develop video coding standards for storage media at a rate of about 1.5 Mbit/s, like the compact disc (CD). This was because, in the second half of the 1980’s, the Consumer Electronics and telco industries imagined that interactive video – local or via the network – was a killing application.

Within 6 months MPEG had already started working on audio coding because – it looks obvious now, but it was not so obvious at that time – if you have video you also need audio and, if you do not compress stereo audio at 1.41 Mbit/s, the output bitrate of a CD, there will be no space left for video. In another 6 months MPEG had started working on “systems” aspects, those allowing a receiver to reproduce synchronised audio and video information.

These were the first steps in the MPEG drive to make standards that had no “holes” for implementors. Thanks to these efforts, the scope of use of MPEG standards, still within the scope of “coding of moving pictures and audio”, have expanded like wildfire: starting from coding of moving pictures at 1.5 Mbit/s and expanded to more video, audio, transport, protocols, API and more. With its standards, MPEG is handling all technologies that facilitate enhanced use of digital media.

The MPEG expansion is a joyous phenomenon that has created an expanding global brotherhood of digital media researchers – in industry and academia – for which MPEG and its standards are the motivation for more research. If research results are good, they can make their way into some MPEG standard.

MPEG needs a structure

Clearly you cannot have hundreds of people discussing such a broad scope of technologies at the same time and place. You can split the work because technologies can be considered independent up to a point. Eventually, however, like in a puzzle, all pieces have to find a place in the global picture. The MPEG structure has been implemented to allow the creation of ever more complex puzzles.

In its 31 years of activity MPEG has developed a unique organisation capable of channeling the efforts of thousands of researchers working at any one time on MPEG standards – only a fraction of which actually show up at MPEG meetings – into the suites of integrated standards that industry uses to churn out products and services worth trillions of USD a year.

The figure below depicts the MPEG structure from the viewpoint of the standard development workflow.

The MPEG workflow

Typically, new ideas come from members’ contributions, but can also be generated from inside MPEG. The Requirements group assesses and develops ideas and may go as far as to request “evidence” of existence and performance of technologies (Calls for Evidence – CfE) or actual “proposals” for fully documented technologies (Call for Proposals – CfP).

MPEG has never had a “constituency” because it develops horizontal standards cutting across industries. It has established liaisons with tens of industries and communities through their standards committees or trade associations. We call many of them as “client industries” in the sense that they provide their requirements to MPEG against which MPEG produces standards. At every meeting, several tens of input liaisons are received and about the same amount of output liaisons are issued.

Many CfPs cover a broad range of technologies that are within the competence of the different MPEG groups. The adequacy of submitted technologies is tested by the Test Group. The submitted proposals and the test results are provided to the appropriate technical groups – Systems, Video, Audio and 3D Graphics.

The Chairs group includes the chairs of all groups. It has the task to assess the progress of work, uncover bottlenecks, identify needs to discuss shared interests between groups and organise joint meetings to resolve issues.

An MPEG week is made of intense days (sometimes continuing until midnight). Coordinated work, however, does not stop when the meeting ends. At that time MPEG establishes tens of ad hoc groups with precise goals for collaborative development to be reported at the next meeting.

The Communication group has the task to keep the world informed of the progress of the work and to produce white papers, investigations and technical notes.

MPEG is not an empire

From the above, one may think that MPEG is an empire, but it is not. MPEG is a working group, the lowest layer of the ISO hierarchy, in charge of developing digital media standards. It formally reports to a Subcommittee called SC 29 but, as I have explained in Dot the i’s and cross the t’s, SC 29 has ended up with a laissez-faire attitude that has allowed MPEG to autonomously develop strategy, organisational structure and network of client industries. MPEG standards have given client industries the tools to make their analogue infrastructures digital and, subsequently, to leverage successive generations of standard digital media technologies to expand their business. With some success, one could say.

The MPEG organisation is robust. Virtually the same organisation has been in place since – 25 years ago – MPEG had an attendance of 300. Groups have come and gone and the structure currently in operation has been refined multiple times in response to actual needs. Changes have been effected, and there will be more changes in the future. However, they all have been and, as far as I can see, will be incremental adaptations, to perfect one aspect or another of the structure. With this structure, more than 150 standards have been produced, some of which have been wildly successful.

MPEG can count on three assets: the logic of the structure, the experience gained in all those years, its membership and its client industries. With these, MPEG success can breed more success in the years to come.

The Imperial Diet is facing a problem

I said before that MPEG is not an empire. In the imperial context of the Holy Roman Empire, MPEG could be defined as a Margraviate in charge of defending and extending a portion of the frontiers of the Empire. A Margraviate reported to a Kingdom who reported to the Imperial Diet.

Now, let’s suppose that the Imperial Diet has requested the S Kingdom to review the status of its two J and M Margraviates and propose a new arrangement. The main element in the decision is the size of the two Margraviates: 10% of the territory of the S Kingdom for the J Margraviate and 90% for the M Margraviate. Ruling out other fancy ideas, the S Kingdom has two options: request that the M Margraviate be elevated to Kingdom status or create a few smaller Margraviates inside the S Kingdom out of the M Margraviate.

There is a problem, though, if the M Margraviate is cut in smaller Margraviates: the Margraviates of the Holy Roman Empire are not domino game pawns. For decades the M Margraviate has fought hard extending its territory – hence the Holy Roman Empire’s territory – to lands that until then were occupied by unruly tribes. It has been successful in its endeavours because it had large armies with different skills: archers, knights, foot soldiers and more. By skillfully coordinating these specialised troops, the M Margraviate was able to conquer new lands and make them faithful fiefdoms.

But there is another important consideration: there are wild hordes coming from the steppes of Central Asia with a completely new warfare technique. Some armies of M Margraviate are having a hard time dealing with them, even though they are learning a trick or two to fight back.

How could the new armies of the different Margraviates created out of the M Margraviate defend – never mind extend – the frontier, when the S Kingdom does not know the territory, having lived all time in its castle, and has never led an army?

The Holy Roman Empire lasted 1,000 years. There is no doubt that the Imperial Diet would make the M Margraviate a Kingdom keeping its armies and structure unchanged. Warfare is a serious business and the effective defence of the frontiers is the priority.


Fortunately, today there is no Margraviates and Kingdoms anymore, much less the Holy Roman Empire. There are also no new territories to conquer by force of arms and there are no frontiers to defend against rebellious hordes.

I realise now that at the beginning of this article I have promised that I would make some considerations on the best way for MPEG success to breed success and not failure. Maybe I will do that next time.

Posts in this thread



Dot the i’s and cross the t’s


In Book 2 of the Georgics, the Latin poet Virgil writes “Felix, qui potuit rerum cognoscere causas”. This maxim was true in 29 BC when the Georgics was written and remains true 2030 years later. For those who did not have the chance to study Latin, the verse means “Fortunate who could know the causes of things”.

Virgil’s maxim will be used in this article to draw some conclusions on current matters. Before getting to the things, however, I need to talk about the the causes. Those who cannot wait can jump to the conclusions, at their own risk.

The need for standards and standards bodies

At the climax of Belle Époque, Europe realised that a properly functioning industry needed standards. Britain – at that time for sure and, from now on, most likely not really part of Europe – was the first to establish an Engineering Standards Committee (1901).

In 1906 the most culturally advanced industrial field of the time – electrical technologies – was the first to recognise the need, not just for standards, but international ones, and established the International Electrotechnical Commission (IEC). Electrical technologies were second only to telecommunications (actually third, if we consider the Universal Postal Union) in recognising that need. Indeed, 41 years before governments had established the International Telegraph Union. But governments is one thing and private industry quite another.

The rest of the world took a quarter of a century and a war to realise the need for international standards. Finally in 1926 the International Federation of the National Standardising Associations (ISA) started, only to stop 16 years later when governments has other priorities (killing millions of people in WW II). In 1946 the idea was revived and the International Organisation for Standardisation (ISO) was created as a not-for-profit association. National Standards Associations (or National Bodies) – not governments – are represented in ISO.

How can you govern an international organisation that issues standards that are, yes, voluntary but, if you do not conform, you’re in a whole world of hurt? The answer is: hierarchy and scope. In ISO there are 4 layers (actually more, if you want to know how many read Who owns MPEG?): Technical Management Board (TMB), Technical Committees (TC), Subcommittee (SC) and Working Group (WG). Each entity is administered by a secretariat run by a National Body and has a scope that defines what the entity is expected and entitled to do.

Some scopes

Delimitation of territory is one of the most engaging human activities. According to Standards for computers and information processing, by T. B. Steel, Jr, page 103 et seqq. (in Advances in computers, Franz L. Alt and Morris Rubinoff (Editors) Volume 8) in 1967 the scope of TC 97 Data processing was: the standardisation of the terminology, problem definition, programming languages, communication characteristics, and physical (i.e. non electrical) characteristics of computers, and information processing devices, equipment and systems.

According to the same source, TC 97/SC 2 Characters set and coding at that time was about Standardisation of character sets, character meanings, the grouping of character sets into information, coded representation, and the identification of it for the interchange of information between data processing systems and associated equipments…

Typically working groups develop standards. They do so with a major constraint: decisions may only be made by “consensus”, defined as

general agreement where there is no sustained opposition to substantial issues by any important part of the concerned interests, in a process that seeks to take into account the views of all parties concerned.

The definition is supplemented by the note: consensus does not imply unanimity.

Obviously this text can only hint at the complexity of other environments where decisions are made not by consensus but by voting. One can image that these other environments are such that, in comparison, a horse-trading market is a place that boarding school pupils can safely visit.


In the 1980’s Videotex was a service telcos wanted to offer as a competing service to broadcasters’ Teletext service. One limitation of videotex and teletext, however, was that information could only be displayed with characters and rudimentary graphics (made as combinations of ad hoc characters). Telcos thought that videotex services could be enhanced by pictures transmitted at 64 kbit/s made available by Integrated Services Digital Network (ISDN).

In 1986 a joint group between TC 97 of ISO and SG XVIII of CCITT (ITU-T’s name of the time) was created to develop a compressed image format. As videotext was based on characters, TC 97/SC 2 was the natural place to develop that standard. SC 2 created WG 8 Coded representation of Picture and audio information. WG 8 hosted the Joint Photographic Coding Experts Group (JPEG).

Two years later, WG 8 created the Moving Picture Experts Group (MPEG), not joint with CCITT. In any case, if it had been joint, it would have been joint with SG XV, not with SG XVIII. There was nothing equivalent to the Treaty of Tordesillas, but in CCITT the digital world was divided between SG XVIII for audio and telematic services, and SG XV for video. MPEG – Coding for Moving Pictures and Audio – was a Copernican revolution.

Immediately, MPEG had a skyrocketing attendance: 100 members 18 months after its establishment and 200 members after two more years. That was because MPEG was working on such a high profile standard as digital television (actually only the baseband part of it, but that did not really matter).

Unlike other committees dealing with the “digital television”, who were populated by “advocates” accustomed to use “analogue” arguments to support their proposals, MPEG was populated by technical experts who made their cases with “digital” arguments in the framework of inflexibly digital Core Experiments rules. Some “advocates” did show up in the early MPEG-2 days, but they soon left never to come again.

The parent committee

In the years 1989-90-91, I had supported WG 8 Convenor’s bid to promote WG 8 to SC status (see here for more details) and in April 1990 the SC 2 plenary approved the following resolution:

JTC1/SC2 considering that

  1. The standardisation of the coded representation of picture, audio and multimedia information is considered to be one of the most important areas for standardization in the 1990’s;
  2. The work and scope of SC2/WG8 has expanded substantially beyond the scope of SC2;
  3. The work of SC2/WG8 has developed into a critical mass largely significant to warrant SC status;

Recommeds to JTC1

  1. To establish a new JTC1 Subcommittee for the purpose of developing standards in the area of Coded Representation of Picture, Audio and Multimedia Information;

It took another 18 months for SC 29, the entity WG 8 had morphed into, to hold its inaugural meeting.

A role for SC 29

In ISO a Subcommittee is part of the formal hierarchy. What was SC 29’s role ?

  1. Playground for “advocates”. Having found a hard time in MPEG, one could think that “advocates” should move to SC 29 to find a more consonant “breeding ground”. Indeed, SC decisions are made by voting, but only after a lot of “analogue haggling” in the hallways. This did not happen because, once MPEG had settled the algorithm, the standard was done, save the need to to cross some t’s and to dot some i’s. There could have been room for some “analogue discussions” on some business-related issues as profiles and levels. SC 29, however, was not the right place to hold such discussions because only MPEG experts could handle the technical aspects.
  2. Playground of large company representatives. At that time some ISO committees were populated by some national body representatives who worked for some large companies. They were interested in committees NOT to develop some standards and sent their representatives to act accordingly. But as fate would have it, in the years immediately following the establishment of SC 29 there was a serious economic crisis that forced some large companies to lay off those professional participants to cut “unnecessary” expenses.
  3. Strategic planner. In 1993, the time of John Malone’s “500 channels”, the Italian National Body proposed to investigate standardisation opportunities for content metadata (see here for more details). SC 29 established an ad hoc group to study the needs for users who wanted to find content in those 500 channels. One year later, however, the convenor of the ad hoc group reported that there had been no activity. MPEG then developed the suite of content metadata standards called MPEG-7.

No one should be surprised that, for the next 25 years, SC 29 held yearly meetings to discuss such strategic issues as progression of work items, consolidations and minor revisions, and liaisons. Of course with no “advocates” in sight.

MPEG as a virtual subcommittee

The space left empty by SC 29 was occupied by MPEG. Continuing its initial drive, MPEG developed a modus operandi that has allowed it to produce the integrated digital media standards that have changed and keep on changing the media industry.

The four figures below depict the main elements of MPEG’s modus operandi.

  1. Top-left depicts the adaptation of ISO’s standard development process to acquire technology elements suitable to the development of a standard and to verify that the standard developed matches the original requirements. More on this at How does MPEG actually work?
  2. Top-right depicts the industries contributing technologies (right-hand side), the means to acquire them, the assets accumulated in MPEG standards and the client/implementation industries (bottom of figure). More on this at The MPEG ecosystem.
  3. Bottom-left depicts the unfolding of the MPEG workflow: ad hoc groups; “MPEG week” with its components: plenaries, subgroups, break-out groups, joint meeting and chairs meetings; and creation of new ad hoc groups. More on this at Looking inside an MPEG meeting.
  4. Bottom-right depicts the integrated nature of MPEG standards. The parts are developed by different groups who come to agree on the glue that is needed to keep the parts independent and interworking. Moreon this  in Hamlet in Gothenburg: one or two ad hoc groups?


MPEG has been fortunate to have been able to operate in a paradise island for 31 years.

It has devised strategies and defined work plans. It has sought and established liaison with outside industries. It has added industries as members of the MPEG digital media community. It has called for technologies and integrated them into standards. It has been the ear industries could talk to to have their needs satisfied

All this while MPEG meetings have grown to 600 participants and “advocates” have been kept at bay.

The MPEG digital media community has thrived on a continuous flow of evolving standards with an impact measured in trillions of USD and billions of people.

In Paradise Lost John Milton writes: Better to reign in Hell, than to serve in Heaven.

In Paradise MPEG a reborn John Milton could write: Better to serve in Heaven than to reign in Hell.

SC 29 was kind enough to handle administration. Mindless industry elements should memorise Virgil’s maxim before they engage in their adventures.

Posts in this thread